手机浏览器扫描二维码访问
馀江省,潇州市,馀江大学,距离紫金校区不远处的紫金西苑小区里,馀江大学数学科学学院研究所的薛松教授正在小区里散着步。
作为馀江大学最年轻的博导,更是最年轻的百人计划研究员之一,现年不过三十八岁的薛松教授未来可以说是前途无量。
能有现在的成就还真不能说完全是靠着良好的家境,事实上薛松本就属于少年天才那一类人。
在国内接受完九年义务教育之后,他就被父母送到了大洋彼岸,入读普林斯顿国际数理学校。去的第一年就拿到了AMC12一等奖,并受邀参加AIME。
在AIME拿到了极高的成绩之后,更是在USAMO取得了不错的成绩,
本来那一年他也收到了加入IMO的邀请,但因为父母的反对,加上他也觉得考累了,便乾脆他选择了放弃代表美国参加IMO的资格。
但即便如此,他还是被直接保送到了普林斯顿大学数学院就读,用三年就完成了本科学业,并被普林斯顿知名数学教授曼朱尔·巴尔加瓦看重,成了这位着名数论学家的学生,开始硕博连读。
曼朱尔·巴尔加瓦的主要研究方向是高阶数论跟代数几何,并曾经因为这方面的贡献拿到过菲尔兹奖。
薛松跟着这位导师主要从事针对整数论的学习跟研究,涵盖了二次形式到椭圆曲线等比较广泛的主题。他的博士毕业论文就是关于整数论中整数分布的深层次结果。
博士毕业之后,因为种种原因,薛松选择了回国发展。并在五年前入职了馀江大学。
薛教授的能力的确是很出众的,同龄人还在头疼怎麽才能过3+3的时候,他直接两连跳,不但拿到了副教授职称,更是凭藉一篇发表在《数学年刊》上的论文,拿到了百人计划的名额。
更是馀江大学未来重点培养的人才,不出意外的话,未来肯定是要往院士的方向冲击的。
数学家,尤其是研究数论的数学家散步肯定不止散步那麽简单,大脑通常也不会休息,而是思考一些乱七八糟的东西。
就很突然的,兜里的手机突然开启了连续震动模式。
薛松停下了思考,拿出手机,发现是微信里自己手底下的研究生群直接炸锅了,几个学生@他后,直接在群里讨论上了。
「老板,您在代数与数论小树屋里出的那道题竟然真被那个菜鸟给解了!您快去看看呀!」
「是的老板,那个菜鸟真解出来了!答案竟然还是对的,我们刚刚验证过了。」
「简直神了,这哪里是什麽菜鸟?这是把哪位大拿的小号在跟我们开玩笑吧2
「虽然我也觉得很可能是哪位大佬来跟大家开玩笑,但说实话,你们觉得那些话是一位大佬能写出来的吗?还自称小爷?到时候身份万一曝光了,得多尴尬啊!」
薛松大概浏览了一遍群里聊天的内容,没有在群里回话,而是扭头便往家走虽然手机也可以直接登入论坛,但如果涉及到他出的那道题,用电脑更方便。
他出的题,当然知道如果真有人把解求出来,这道题的解会有多大。起码手动演算很累,必须得上计算机。
事实上他选择在论坛上冒泡,并给出这麽一道题,是因为他最近研究中的一个小突破,简单来说就是他找到了一种方法,能够证明类似于他所出题型的一类方程具备整数解。
这也是他已经投稿给ActaMathematica的一篇论文《AClassof
DiophantineEquationsArisingfromSymmetricFractionalSums:E.istence
ofIntegerSolutions》。
论文主要内容就是证明了对称分数和的一类丢番图方程整数解的存在性。
他给出的那个方程,就是这一类方程中比较具备代表性的一个。
这里需要给大家解释一个数学方面的小知识。
数学中证明某类甚至某个方程有整数解跟直接求出数值解并不是一回事。
前者是使用数学推理跟证明技巧,透过对方程结构的分析以及数学归纳法的使用,确认该类方程有且至少有一个整数解。
求解则是透过具体的计算步骤,比如运用合并同类项丶移项丶因式分解等等方程求解技巧,计算出方程具体的数值解。
换句话说,虽然薛松已经确定了这个方程具备整数解,但其数值解是多少,
他其实也不知道。唯一能确定的是,这个数值非常巨大!
事实上,丢番图方程在数论领域本就是一个未解的难题。
比如费马猜想就是最着名的丢番图方程之一,当然被证明之后就成了费马大定理。
1900年在法国巴黎举办的第二届世界数学家大会上,着名数学家希尔伯特在做开场报告时,曾提出了着名的一百个问题,其中第十个就是关于丢番图方程的原文是:是否存在一个通用的演算法,能够决定任意给定的丢番图方程是否存在整数解。
1970年,针对这第十问,前苏国数学家尤里·马季亚舍维证明了并不存在这样一个通用演算法,给了希尔伯特第十个问题一个很确定的否定答案。
但这并不代表着丢番图问题就没有研究价值了。
事实上这个否定的结论恰好证明了,丢番图方程在某些情况下具有极大的复杂性,甚至可以说,它超越了传统演算法可以解决的范畴,在计算理论中具备着根本性的重要作用。
所以丢番图方程依然被视为数论中的世界性难题之一,尤其是在更高维数和更复杂的情况下。
现在竟然有人徒手直接把这个方程解求出来了?
还是个刚申请加入论坛的菜鸟?
薛松只觉得脑子都是嗡嗡的。
华夏数学圈子就那麽大,研究数论的就更少了。
所以代数数论小树屋其实就是一个特别小众的论坛,宣传全靠口口相传,也没有任何盈利需求,就是一个国内研究代数与数论教授跟研究生们日常讨论的聚集地。
一般人本就不太可能闯进来,哪怕不小心点进来,想要注册,面对从题库中随机挑选的五十道选择题,也只能抓瞎。
后代子孙不听话,尽出不孝极品怎么办?杨香薇表示没关系,不孝那就是打得不够,一顿不够,那就两顿,两顿不够那就三顿总之,只要多打几顿就乖了!啃老男逛哭妈,我错了,别打了!亿万败家子呜呜呜妈,我错了,别打了!小白花女儿妈,我错了,我再也不勾搭男人了!千里迢迢追到小世界的太叔修你哪来的那么多后代子孙?快穿之我家老祖宗是满级大佬...
科技拯救不了我,我却能用科技拯救仙界!正在人生低谷的吴典遭遇了球形闪电,手机上却意外的多了个app,联系到了异界的女仙,教给他神奇符文,让他成功逆袭,狠狠报复了欺压自己的老总和背叛的女友。随后向女仙学习阵法,将现代能源转化成修炼所需的元气,成为了真正的修士,从此收徒弟,建门派,横扫一切,站在了世界的巅峰!女仙的世界遭遇末世危机,吴典利用现代科技,结合阵法,改变了女仙原本绝望的命运,两人得以飞升上界相聚,立下仙宗称尊做祖!...
许洛穿越了,睁开眼就是劫匪的分赃现场。因为没继承原主的记忆,误以为自己真是劫匪,所以他选择全都要,独吞价值五千万的钻石!以此实现财富自由后,两个警察却突然找到他,说他是卧底,命令他在道上调查钻石劫案是谁干的,赃物又去向何处。许洛当时整个人都麻了啊!只能反手一套骚操作PS本书又名人在诸天,为所欲为注诸天文,浪子,主角略屑,无系统,行事随心所欲,放飞自我,不喜勿入。...
简介关于宝贝乖乖!病态反派掐腰诱哄[双洁甜宠1v1][穿越系统娱乐圈金手指虐渣]苏柠玥穿书了,穿到一个愚蠢恶毒的炮灰女配身上,一睁眼就面临着生命只剩下五分钟的提示。系统告知她,得攻略书中顶级的病娇偏执反派,与他贴贴亲亲抱抱才能续命。为了保命,她戏精上身,各种娇弱地往反派身边凑。可以抱一下吗?亲亲行不行。人人皆知,墨时宴不近女色,冷漠无情,手段残忍。可他们不知道,人人畏惧的偏执病娇大佬,在某个小心肝面前,到底有多温柔。祖宗,你搭理一下我好吗?[女主黑莲花,男主只对女主温柔]...
简介关于忠犬太子的掌心娇堂堂22世纪的兵王战神,穿到爹不疼的小姑娘的身体。一来就要面对自己被卖的场面,但凡给她一个好点的身体,这群渣渣都不能做什么!还好还好,医药空间如影随形,为她治好身体。什么!青梅竹马的好朋友居然是个变态病娇?还非她不娶?没关系,看她一拳锤的病娇俯称臣!让他乖乖变忠犬!不过,堂堂大将军王突然变成太子妃,她是不是吃大亏了???...
林曦出生不祥被寄养乡下,十岁被人推入河中差点溺死,醒来时有了一张开光嘴,说啥啥灵。不仅如此,人人都能听见她的心声。十五岁被接回林家,面对不待见自己的家人,林曦在心里给他们送上真挚的祝福喝水被呛的林妈走路平地摔的林爸出门被狗追的大哥二哥!!!林爸林妈我的好囡囡,爸爸妈妈爱你!大哥二哥好妹妹,哥哥的零花钱都给你!面对嘲笑辱骂自己的同学,林曦笑眯眯地善意提醒嘴臭的同学们在座位上坐立不安林曦,算你狠!面对帮助自己的好心人,林曦满心诚意地给她们好人祝福语真的心想事成的好心人林曦,你是我的神!从此,林曦凭借一张开光嘴,成功逆袭成为全家的掌心宝,全校的小团宠,生活简直美滋滋!...