手机浏览器扫描二维码访问
1685年,沃利斯(a11is)出版了《代数》(dea1gebra),包含了牛顿二项式定理的最早描述。它也使哈利奥特的卓越贡献为人所知。二项式定理,是一个a加b的n次方的展开计算。
沃利斯对牛顿说:“你最近在研究什么?”
牛顿说:“二项式定理。”
沃利斯说:“巴斯卡三角,甚至古中国的杨辉三角而已,还有什么好研究?”
牛顿说:“没什么,仅仅是想前进一步。”
沃利斯笑说:“这些东西有用吗?”
牛顿笑着说:“我觉得有很多用,虽看朴素,但里面蕴藏着很多能量。”
沃利斯说:“比如说?”
牛顿说:“我在想开二次方可以计算,就是不断的将小数点后的数字,先写成5,大的让这个数变成4,小了让这个数变成6。然后一直不断往后写,就可以慢慢的遍历出个无穷的样子。”
沃利斯说:“那又如何,不用二项式,我蒙着这样乘下去不就可以了?”
牛顿说:“开3次,还用这样的办法的话,就困难了,同时开3次以上的话,就更难了。”
沃利斯说:“继续说。”
牛顿说:“我想吧二项式中的n,从整数变成分数来计算。也可以。”
沃利斯说:“如果是整数,可以有帕斯卡三角,或者是一种组合公式来表示系数。分数的你该怎么办呢?”
牛顿说:“很容易,把那个组合公式中的n也变成对应的分数,甚至负数都可以。”
沃利斯抬头开始想牛顿说的这个组合公式的变化。
沃利斯开始去写1加x的负一次方的展开,写成了无穷的形式,等于1减去x的平方加x的二次方减x的三次,一直到无穷。因为组合方程计算出来的是1和-1这两个数字的交替。x的奇数次方的系数是负一,x的偶数次方的系数是正一。
疑惑的说:“等等,变成负数我还可以想象,变成分数这还用意义吗?”
牛顿说:“为什么没有意义,也没有人规定一定是整数呀,你脑子太死板,不知道其中的奥秘,这里面有很多有趣的数学意义。”
沃利斯也开始尝试的开始写二分之一次方的组合方程,然后带入到1加x的二分之一次方,也写出了看着复杂一些的无穷的级数。
沃利斯看着这个花里胡哨的东西,对牛顿说:“这个东西有作用吗?看着花哨。”
她本是叱咤天下令人闻风丧胆的...
作品简介李白,字太白,诗沥古今,剑震大唐,竟是圣道法魂身,时光驰行穿越过去未来。太白峰顶,李白的宇箭,又再搭上了天弓,驰骋万劫天下,看我诗剑无双!移星换斗各位书友要是觉得诗剑无双还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
古昆仑是如何消失不见的?九重天出现的原因什么?神灵的神格究竟是什么?蜀山剑修一剑行天下的秘密是什么?人成仙的道路又是如何断绝的?乱世寻仙录,带你走进这一段遗失的岁月。乱世寻仙录...
序天地间,道,何在?韵,何存? 穷亿亿年,上下求索之。 始混沌,蕴其一。 上清下浊,分阴阳,一生二。 天地出,时空现,万物衍。 大道三千,中道十万,小道百万。 法则立,始成界。 五行为基,变异生,循环成。因果轮回,命运引,众生行。 天道之玄,韵味之妙,冥冥其求。 (感悟宇宙演化万千道韵,成就最强征服之道,笑傲异界,仙路逍遥行)各位书友要是觉得仙韵传还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
主角是个男人,女主角是个女人,朋友是个哥们,敌人全部都是坏蛋。一根棍子的故事,一个特种兵的穿越。一棍在手,美女我有,欲炼此功,挥棍自宫…呸呸,说错话了…看主角如何用现代的知识打造一只异界的特种部队...
优质精品图书推荐...